
USB Communication

Monday, February 6, 2012

What is USB?

• Universal Serial Bus

• Low-Speed, Full-Speed, High-Speed: 1.5, 12, and 480 MBps

• Host-initiated Transfers

• Four transfer types: Control, Isochronous, Interrupt, Bulk

• Two transfer directions: IN & OUT (host-centric)

Monday, February 6, 2012

Control Transfers

• Typically used by USB system software to query, configure, and issue
certain generic commands to USB devices.

• In PSoC, don’t need to worry about these.

Monday, February 6, 2012

Isochronous Transfers

• Guaranteed latency & bandwidth transfer

• Sorta like UDP (no error checking/correction)

• For use when data delivery time is more important than accuracy

• 0-1023 bytes per transfer with Full-speed USB

Monday, February 6, 2012

Interrupt Transfers

• Used to poll devices at regular intervals

• Typically for devices which transmit a small amount of data (mice,
keyboards, etc.)

• Can also be used to signal that other endpoints have data available.

• 0-64 bytes per transfer with full-speed USB

Monday, February 6, 2012

Bulk Transfers

• Most common transfer you will use.

• 0-64 bytes per transfer with full-speed USB

• error checking

• given low priority on the bus, but generally works pretty quick

Monday, February 6, 2012

Transfer Limits
• USB divides transfers into “frames”.

• Each frame is 1 ms.

• One transaction per endpoint, per frame.

• Max bandwidth for full speed bulk endpoint = 64 bytes * 1000 =
64Kb/s.

• High-speed usb is considerably faster, as it divides each frame into 8
“microframes”, and allows for much 512 byte transfers in each
microframe, allowing for 512*8*1000 = 4 MB/s.

Monday, February 6, 2012

PSoC® Creator™ Component Datasheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-75671 Rev. ** Revised January 18, 2012

Features
USB Full Speed device interface driver

Support for interrupt, control, bulk, and isochronous transfer types

Run-time support for descriptor set selection

Optional USB string descriptors

Optional USB HID class support

Optional Bootloader support

Optional Audio class support

Optional CDC class support

General Description
The USBFS component provides a USB full-speed Chapter 9 compliant device framework. It
provides a low-level driver for the control endpoint that decodes and dispatches requests from
the USB host. Additionally, this component provides a USBFS customizer to make it easy to
construct your descriptor.
You have the option of constructing a HID-based device or a generic USB Device. Select HID
(and switch between HID and generic) by setting the Configuration/Interface descriptors.
Refer to the USB-IF device class documentation for additional information on descriptors
(http://www.usb.org/developers/devclass/).
Note Cypress offers a set of USB development tools, called SuiteUSB, available free of charge
when used with Cypress silicon. You can obtain SuiteUSB from the Cypress website:
http://www.cypress.com.

When to Use a USBFS
Use the USBFS component when you want to provide your application with a USB 2.0 compliant
device interface.

Full Speed USB (USBFS)
2.11

PSoC USB Component
Full speed USB

Support for all 4 transfer types
512 Bytes of endpoint memory

8 Endpoints (IN or OUT or mixture of both)

Monday, February 6, 2012

Major API Components
• USBFS_Start

• Starts the USB component

• USBFS_GetEPState(uint8 epNumber)

• Returns state of given USB endpoint

PSoC
®
Creator™ Component Datasheet Full Speed USB (USBFS)

Document Number: 001-75671 Rev. ** Page 27 of 52

uint8 USBFS_GetEPState(uint8 epNumber)
Description: This function returns the state of the requested endpoint.

Parameters: uint8 epNumber: Data endpoint number

Return
Value:

uint8: Returns the current state of the specified USBFS endpoint. Symbolic names and their

associated values are given in the following table. Use these constants whenever you write

code to change the state of the endpoints, such as ISR code, to handle data sent or received.

Return Value Description

USBFS_NO_EVENT_PENDING The endpoint is awaiting SIE action

USBFS_EVENT_PENDING The endpoint is awaiting CPU action

USBFS_NO_EVENT_ALLOWED The endpoint is locked from access

USBFS_IN_BUFFER_FULL The IN endpoint is loaded and the mode is set to ACK IN

USBFS_IN_BUFFER_EMPTY An IN transaction occurred and more data can be loaded

USBFS_OUT_BUFFER_EMPTY The OUT endpoint is set to ACK OUT and is waiting for

data

USBFS_OUT_BUFFER_FULL An OUT transaction has occurred and data can be read

Side Effects: None

uint8 USBFS_GetEPAckState(uint8 epNumber)
Description: This function determines whether an ACK transaction occurred on this endpoint by reading

the ACK bit in the control register of the endpoint. It does not clear the ACK bit.

Parameters: uint8 epNumber: Contains the data endpoint number.

Return Value: uint8: If an ACKed transaction occurred, this function returns a nonzero value. Otherwise, it

returns zero.

Side Effects: None

uint16 USBFS_GetEPCount(uint8 epNumber)
Description: This function returns the transfer count for the requested endpoint. The value from the count

registers includes two counts for the two-byte checksum of the packet. This function

subtracts the two counts.

Parameters: uint8 epNumber: Contains the data endpoint number.

Return Value: uint16: Returns the current byte count from the specified USBFS endpoint or 0 for an invalid

endpoint.

Side Effects: None

• USBFS_LoadInEP(uint8 epNumber, uint8 *pData, uint16 length)

• Loads an IN Endpoint with a data array

• USBFS_ReadOutEP(uint8 epNumber, uint8 *pData, uint16 length)

• Reads data from an OUT Endpoint to a data array.

Monday, February 6, 2012

IN Data flow
• PSoC checks if endpoint status is USB_IN_BUFFER_EMPTY

• PSoC loads an IN buffer with data, API sets status flag to USB_IN_BUFFER_FULL
automatically

• HOST Issues an IN transaction

• PSoC USB SIE (Serial Interface Engine) responds to transaction without CPU intervention

• Endpoint status flag is set to USB_IN_BUFFER_EMPTY

• repeat....

Monday, February 6, 2012

OUT Data flow
• HOST Issues an OUT transaction

• PSoC USB SIE (Serial Interface Engine) responds to transaction without CPU intervention,
sets endpoint status flag to USB_OUT_BUFFER_FULL

• PSoC checks if endpoint status is USB_OUT_BUFFER_FULL

• PSoC reads data from OUT buffer, API sets status flag to USB_OUT_BUFFER_EMPTY
automatically

• repeat....

Monday, February 6, 2012

USB on the PC side

• Libraries:

• libusb-1.0 -- best option I have found so far for cross-platform USB.

• CyUSB -- windows-only USB driver provided by Cypress

• Finding Devices:

• VID/PID (Vendor ID, Product ID), uniquely identifies device.

• format is 4 hex characters per ID: 0xFFFF/0xFFFF

• Vendor IDs are licensed by USB Consortium (but you don’t need a
license to use a random one)

Monday, February 6, 2012

USB on the PC side

• Device Descriptors

• Table of configuration data that tells the PC what capabilities the
USB device has

• Includes number of endpoints, type of endpoints

• Can have multiple configurations of descriptors

• USB Device Classes

• Standardized USB Class Descriptors that allow the Operating
system to interface with a device without needing a custom driver

• Examples: Mice, Keyboards, some sound cards

Monday, February 6, 2012

libusb-1.0

• C library

• Cross-platform: Mac, Linux, Windows.

• python integration with PyUSB

• other language wrappers exist as well, (.NET, etc.)

Monday, February 6, 2012

libusb-1.0 synchronous API

• libusb_bulk_transfer(
struct libusb_device_handle * dev_handle,
unsigned char endpoint,
unsigned char * data,
int length,
int * transferred,
unsigned int timeout
)

Monday, February 6, 2012

http://libusb.sourceforge.net/api-1.0/group__dev.html#ga7df95821d20d27b5597f1d783749d6a4
http://libusb.sourceforge.net/api-1.0/group__dev.html#ga7df95821d20d27b5597f1d783749d6a4

USB Endpoint conventions

• Usually written in hex.

• PSoC can handle 8 endpoints

• MSB indicates direction of endpoint:

• 0x81-0x88 = IN Endpoints

• 0x01-0x08 = OUT Endpoints

Monday, February 6, 2012

Assignment

• Build an application on the PSoC to send some data via USB to your
PC or Mac.

• Data can be potentiometer data, button state, whatever.

• Make it do something useful! (volume control, hide browser
windows, etc.)

Monday, February 6, 2012

Resources

libusb-1.0 API: http://libusb.sourceforge.net/api-1.0/index.html

LibUSBDotNET: http://libusbdotnet.sourceforge.net/V2/Index.html

For windows: ZADIG Driver installer:
https://sourceforge.net/projects/libwdi/files/zadig/

USB Overview (needs VPN)
http://proquest.safaribooksonline.com/book/-/9781435457867/usb-an-overview/

ch02

Monday, February 6, 2012

http://libusb.sourceforge.net/api-1.0/index.html
http://libusb.sourceforge.net/api-1.0/index.html
http://libusb.sourceforge.net/api-1.0/index.html
http://libusb.sourceforge.net/api-1.0/index.html
https://sourceforge.net/projects/libwdi/files/zadig/
https://sourceforge.net/projects/libwdi/files/zadig/
http://proquest.safaribooksonline.com/book/-/9781435457867/usb-an-overview/ch02
http://proquest.safaribooksonline.com/book/-/9781435457867/usb-an-overview/ch02
http://proquest.safaribooksonline.com/book/-/9781435457867/usb-an-overview/ch02
http://proquest.safaribooksonline.com/book/-/9781435457867/usb-an-overview/ch02

