
LayerFish: Bimanual Layering with a Fisheye In-Place

Andrew M. Webb1, Andruid Kerne1, Zach Brown1, Jun-Hyun Kim2, Elizabeth Kellogg1

1Interface Ecology Lab, Deptartment of Computer Science and Engineering
2Department of Landscape Architecture and Urban Planning
Texas A&M University, College Station, Texas, United States

{andrew, andruid, zach, elizabeth}@ecologylab.net, jhkim@arch.tamu.edu

ABSTRACT
We introduce, LayerFish, a bimanual interaction technique
for layering overlapping content in large 2D design spaces.
Designers compose visual elements, often producing over-
lap and requiring layering in the z-dimension. A common
approach in design tools is to provide a scene index, as an
ordered list of layered elements. Scene indexes become dif-
ficult, in terms of physical effort and human cognition, to
deal with when working with hundreds of elements. Layer-
Fish renders an in-place scene index as a fisheye to reduce
demands on effort and attention. Bimanual gestures support
selection, scrolling, and manipulation. We evaluated layering
task performance with LayerFish in comparison to a tradi-
tional scene index. Findings indicate that the fisheye reduces
time to find an element and selection reduces layering time
when elements do not heavily overlap.

Author Keywords
visual design; scene index; pen+touch; bimanual interaction

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User Inter-
faces - Graphical User Interfaces

INTRODUCTION
Designers work with many visual elements, from 10s to 100s,
in large 2D spaces. Elements overlap, requiring reordering of
the visual stack, or layering, to place some elements in front
of or behind others. As the number of overlapping elements
increases in scale, the complexity of layering also increases.
This requires more expressive forms of interaction than the
common “bring to front” and “send to back” contextual menu
options provided in tools such as Powerpoint.

Design tools, such as Adobe Illustrator, support complex lay-
ering through a scene index—an ordered list showing the vi-
sual stacking order of elements. Each element in the 2D de-
sign space is represented in the scene index by a correspon-
dent thumbnail. Correspondents can be reordered to adjust
the visual stacking of elements. They can also be selected

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ISS’16, November 6–9, 2016, Niagara Falls, ON, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-4248-3/16/11 ...$15.00
DOI: http://dx.doi.org/10.1145/2992154.2992171

Figure 1. Example of bimanual interaction in LayerFish. The left hand
touch has a correspondent selected and held in place, while the right
hand drags to scroll the fisheye scene index.

to constrain direct manipulation to only corresponding ele-
ments, even those occluded by other elements. As the number
of elements increases, the scene index must afford scrolling.
Scrolling becomes tedious when working with hundreds of
elements. Further, the index is often located out of the user’s
visual focus, requiring her to split attention between the de-
sign space and the index.

Prior work developed alternative techniques that provide in-
place layering, addressing the split attention shortcomings of
the scene index [11, 19]. However, these techniques are de-
signed for working with a small number of elements, and will
not scale well in design spaces with hundreds of elements.

LayerFish is a pen+touch interaction technique to support
layering and manipulating overlapping content in a 2D de-
sign space on desktop and large collaborative surfaces (see
Figure 1). LayerFish addresses issues of scene index scale
and split attention through a fisheye visualization [6] and in-
place positioning of the scene index at the user’s point of fo-
cus. The fisheye distorts the visual space, decreasing the sizes
of correspondents away from a focus element, and so enables
more to be visible than a typical scene index. However, inter-
action issues arise, as the spatial distortion disrupts layering
and scrolling operations. We develop bimanual techniques
to address these issues, which keep the focus element fixed
while the scene index reorders layers and scrolls. We hypoth-



esize that the fisheye will reduce time to find desired corre-
spondents, since the spatial distortion would help scrolling
over large distances.

This paper begins with a discussion of prior work. Next, we
present LayerFish. We follow with an evaluation comparing
performance of LayerFish—when working with a large num-
ber of elements—to a traditional scene index. We discuss
findings and derive implications for design.

RELATED WORK
Various layering techniques exist. Commercial design tools
typically use either pop-up menus or scene indexes. HCI re-
searchers have developed alternatives, investigating how spa-
tial arrangement [19, 7, 10, 17] and sensing modalities [4, 11]
can support interacting with dense and occluded content.

Commercial Design Tools
Many commercial design tools employ a contextual menu
(e.g. Microsoft Powerpoint). The contextual menu includes
several commands, not all of which are for accessing oc-
cluded content. In mouse-based interfaces, the contextual
menu is activated by right clicking an element. The user
must navigate a hierarchical menu and find the command to
bring an element forward or backward. In touch-based in-
terfaces, the contextual menu is activated by touching an ele-
ment. Commands appear in a menu bar. The contextual menu
approach requires the user to perform input on an element,
which may be occluded, making it challenging to activate.

Alternatively, a scene index provides an ordered list of visual
layers, which can be rearranged to adjust the z-ordering of
elements. As the number of layers grows, the index becomes
large. It can become difficult to find a layer. Thumbnails for
each layer are used to support recognition. The thumbnails
are all the same size, making it difficult to differentiate similar
elements of different sizes [19]. LayerFish addresses issues
of scale through a fisheye visualization and user selection.

HCI Researchers
Ramos et al. explored techniques that maintain the shape and
size of elements, while creating spatial separation between
layers, enabling novice users to interact with occluded con-
tent [19]. LayerFish addresses issues of scale while also
maintaining element shape.

Herrlich et al. developed a touch technique for selecting oc-
cluded content [10]. The user resolves selection ambiguity
by touching proxies arranged radially around the point of in-
teraction. Handle Flags is an in-place technique for selecting
overlapping ink strokes without complex lasso selections [7].
For LayerFish, ther user needs to not only select the element
to be layered, but also nearby element(s) that it will be lay-
ered above or below. Therefore, we use lasso for selecting a
region rather than one of these precise selection approaches.

Pen and multi-touch sensing technologies support additional
input parameters that can be used to access and manipulate
occluded content. Davidson and Han used touch pressure and
points of contact to define layering gestures [4]. Hinckley et
al. combined touch to select an element with pen tilt to reveal

occluded elements [11]. These techniques are designed for
working with a few overlapping elements.

Leithinger and Haller address occlusion issues of context
menus on cluttered tabletops through user-drawn arrange-
ments of menu items [17]. LayerFish’s in-place scene index
raises occlusion issues that could be mitigated through user-
drawn arrangement. However, new interaction issues arise
as scrolling the scene index and re-ordering correspondents
involves two dimensions instead of one.

LAYERFISH
LayerFish is a bimanual interaction technique designed for
desktop and large surfaces, including tabletops, where both
hands are free to interact on the surface. We found, through
discussions with visual designers, that these form-factors are
commonly used when working with many layers. Smaller
form factors are also used, but tended to involve fewer layers.

The LayerFish technique consists of a selection and activa-
tion gesture, a fisheye scene index, and interactions for layer-
ing elements and manipulating occluded content. For brevity
and simplicity, we will describe our technique in terms of
a right-handed user, where the right hand is their preferred
hand and the left hand is their non-preferred hand. For left-
handed users, interactions with LayerFish are mirrored, so
that roles of preferred and non-preferred hand are consistent.

Selection and Activation
Using LayerFish begins with selecting elements on which to
operate, followed by an activation gesture. Selection specifies
the elements active in LayerFish. Unlike a traditional scene
index that contains all elements, selection enables the user
to work with a subset of elements, and so addresses scaling
issues for human attention. To distinguish between normal
selection for manipulating a group of elements versus selec-
tion for LayerFish, we use an activation gesture. LayerFish
supports two bimanual input modalities for selection and ac-
tivation, pen+touch and multi-touch.

Pen+Touch
When using the pen, LayerFish supports lasso selection of el-
ements. LayerFish is activated with a Lasso’n’Cross gesture
[1]. A lasso selection with the pen is followed by a verti-
cal slash across the center of the circled selection (see Fig-
ure 2). We adhere to Hinckley et al.’s recommendation that
the pen by itself creates ink, but when combined with touch
performs alternative operations [12]. In order to use the pen
as a selection tool, a modifier is needed. We provide an edge-
constrained chorded gesture area for the left hand, called the
Hotpad. Edge-constrained gestures with the non-preferred
hand support efficient modal switching [9]. The Hotpad ap-
pears in the bottom corner on the left-hand side. Holding one
finger down on the Hotpad modifies the pen to function as a
lasso selection tool. After the user performs a Lasso’n’Cross
gesture with a vertical slice, LayerFish’s fisheye scene index
appears adjacent to the bounding box of the selection area.

Multi-touch
Touch input is less precise than pen due to the fat finger prob-
lem [13]. We suspected this imprecision would make lasso



Figure 2. While holding a left-hand touch on the Hotpad, the user per-
forms a Lasso’n’Cross gesture with a pen, selecting elements with a
lasso, followed by a vertical slash to activate LayerFish.

selection involving dense overlapping content difficult with
touch. We instead support rectangular selection with touch.
Again, a left hand touch on the HotPad defines right-hand ac-
tions as selection. With a right-hand touch, the user drags a
rectangular selection area that defines what elements Layer-
Fish will select. Once the desired selection area is defined,
with the left hand touch still down, the user lifts up the right
hand and makes a vertical slash through the rectangular se-
lection. The slash activates LayerFish’s fisheye scene index
with the elements within the selection bounds.

Fisheye Scene Index of Layered Elements
Upon activation, correspondents, representing the subset of
selected elements, appear in an ordered list. Correspondents
are ordered from top-most selected element to bottom-most.

Fisheye Visualization
A fisheye visualization is used to represent the list of corre-
spondents (see Figure 3). Fisheyes are a focus+context tech-
nique that use spatial distortion to give larger visual empha-
size to a focus while providing a smaller peripheral view of
contextual details. In the case of LayerFish, the fisheye al-
lows the user to see more correspondents at once than with a
traditional scene index. The spatial distortion also makes the
effect of scrolling non-linear, enabling direct-touch scrolling
over larger distances than with a traditional scene index.

The fisheye visualization defines a focus, initially the top cor-
respondent in LayerFish. The focus is given a fixed size
(120 x 80 pixels at 94 dpi). Correspondents get progressively
smaller as you move away from the focus. Pressing down
with pen or touch on a correspondent makes it the focus of
the fisheye. Through pen or touch drags, the scene index is
scrolled, keeping the focus positioned under the drag input.

LayerFish supports inertial scrolling, a common technique
used in touch interfaces for browsing large lists. With a quick

Figure 3. Example of fisheye scene index in LayerFish. The focus of the
fisheye is on the correspondent of the woman in a coat. Correspondents
get smaller in size further from the focus.

flick, the fisheye scrolls based upon the velocity and direc-
tion of the flick, decelerating with time. We employ a form of
speed-coupled flattening during inertial scrolling to address
target acquisition issues [8]. That is, when the velocity of
inertial scrolling exceeds a threshold, we flatten the fisheye
scene index, making all correspondents equal in size. As the
velocity falls back below the threshold, we redraw the fisheye
with a focus on the top-most or bottom-most visible corre-
spondent in the direction of the scroll.

Layering Interactions
The user adjusts an element’s position in the visual stack by
first selecting and then dragging and dropping, with pen or
touch, its correspondent up or down the scene index. A cor-
respondent is selected by briefly pressing down on it. The
selected correspondent enlarges slightly, giving the effect of
popping out of LayerFish. A rectangular placeholder high-
lights the current position of a selected correspondent in the
scene index (Figure 4). As the selected correspondent is
dragged up or down, the placeholder moves up and down
the list accordingly, swapping positions with correspondents.
The fisheye redraws, maintaining focus on the placeholder.
When the user drops the selected correspondent, it is placed
back in the scene index in the position of the placeholder.

Bimanual Scrolling
Drag and drop layering only supports layering above or below
what is currently visible in the fisheye. As user the drags
a selected correspondent, the focus changes, providing less
space to visualize correspondents in the direction of the drag.
To overcome this issue, the user can scroll the scene index
without changing the focus, using a bimanual gesture. With
a correspondent selected using the right hand, the user can
drag the scene index using the left hand, causing the fisheye
to scroll. The selected correspondent remains fixed below the
right hand, while its position in the scene index changes as
correspondents above or below it are scrolled up or down.



Figure 4. The correspondent for the woman in a coat is selected. A gray
rectangle indicates the current position of the selected correspondent in
the scene index. A rectangular outline in the design space shows the
location of the element represented by the selected correspondent, even
though the element is hidden behind the beige wall (the correspondent
directly above in the scene index).

The user can scroll the fisheye scene index at a faster rate
by dragging up or down with a left hand touch, beyond the
bounds of LayerFish. This initiates automatic scrolling. The
further away from LayerFish that the user drags the left hand
touch, the faster the automatic scrolling happens.

EVALUATION DESIGN
To evaluate the effectiveness of LayerFish for adjusting the
visual stacking order of overlapping content, we designed
a repeated measures (within-subjects) evaluation comparing
LayerFish with a traditional scene index, which we call Side-
bar. We compare differences in task time between LayerFish
and Sidebar. We vary several independent variables, includ-
ing the number of elements and overlap density, to investigate
in which situations LayerFish performs better than Sidebar.

Apparatus
The study apparatus consisted of a pre-questionnaire, two tu-
torial videos, 12 training tasks, and 48 study tasks. Partici-
pants began by answering the pre-questionnaire, which col-
lected demographic information and details about their expe-
riences using visual design tools and layering. Then, a tutorial
video explained the task that participants would perform and
demonstrated how to use either LayerFish or Sidebar. Next,
participants performed 6 training tasks, followed by 24 study
tasks using either LayerFish or Sidebar, depending on which
tutorial video was shown. After completing the tasks, a sec-
ond tutorial video demonstrated how to use the other tech-
nique, either LayerFish or Sidebar, that the participant had
not yet used. Again, the participants performed 6 training
tasks, followed by 24 study tasks. The study concluded with
a post-questionnaire. Study sessions lasted approximately 30
minutes. Participants were given a $15 Amazon gift card.

Task
Each task consisted of a visual arrangement of overlapping
elements (see Figures 6 and 7). Each element was a dancing

figure from the artworks of Keith Haring [5], providing play-
fully engaging visuals with low complexity. The number of
elements and how much they overlap was specified by inde-
pendent variables (see Independent Variables section). The
objective of each task was to layer a task element so that it re-
sides between two goal elements in the z-dimension. The task
and goal elements were uniquely colored with special fill pat-
terns to make them easily distinguishable from the other ele-
ments (see Figure 5). The two goal elements always resided
near the top of the visual stack, while the goal element resided
near the middle or bottom. Performing a task consisted of
three stages: (1) accessing the layering technique; (2) finding
the task element; and (3) layering the task element between
the two goal elements.

Figure 5. Yellow-gridded task element in the center, and two goal state
elements (blue-dotted and red-striped) on left and right.

Sidebar
Sidebar represents a typical scene index used in visual design
tools. In the study, Sidebar appears on the preferred hand
side of the screen and contains correspondents for all ele-
ments (see Figure 6). Using a single touch drag, Sidebar is
scrolled. The participant adjusts the layering of an element
by dragging out the correspondent horizontally. The corre-
spondent is removed from the scene index and appears under
the participants dragging touch. Dragging the correspondent
above or below the presented scene index will cause scroll
the scene index in the dragged direction, beyond the initially
visible subset of elements. Dropping the dragged correspon-
dent back onto the scene index enables the participant to layer
an element higher or lower in the visual stack. Dropping the
correspondent outside the scene index cancels the operation,
returning the correspondent to its original position.

Hardware Setup
The study workstation consisted of a Windows 8.1 PC with
an Intel i7-5960X processor, 16GB RAM, and an NVIDIA
GeForce GTX 680 Ti graphics card. Pen and touch input
was supported through a Wacom Cintiq 24HD Touch display
(1920 x 1200 pixels). Two cameras, one overhead and one on
the right, captured participants’ gestural interactions.

Independent Variables
Tasks involved 4 independent variables: Technique, Overlap
Density, Number of Elements, and Layering Distance.

Technique
Technique was either LayerFish or Sidebar.

Overlap Density
Overlap Density is either Low or High. For Low Overlap
Density, the task and goal elements only overlap with a few
other elements (see Figure 7). This represents common lay-
ering tasks, such as when designing slides for a Powerpoint
presentation. For High Overlap Density, all elements overlap.
This represents the worst possible case for layering tasks.



Figure 6. Study task example with Sidebar and Low Overlap Density.

Figure 7. Low Overlap vs. High Overlap Density with LayerFish.

High Overlap Density focuses investigation on how Layer-
Fish’s fisheye visualization compares with a traditional scene
index when the numbers of correspondents are the same. In
Low Overlap Density tasks, LayerFish can be used to select
a subset of elements. In High Overlap Density tasks, all el-
ements overlap, so the user is unable to select a subset using
LayerFish. As a result, both techniques present an equal num-
ber of correspondents, where the primary difference is how
the correspondents are presented, either with fisheye or in a
traditional scene index.

Number of Elements
The Number of Elements is either 25 or 100. Through in-
formal needs and requirements gathering sessions, Landscape
Architecture students reported often creating design represen-
tations with around 100 layers. In the most extreme cases, all
these layers overlapped. Thus, the condition with 100 ele-
ments and High overlap, represents a worst possible case sce-
nario. While, 25 elements and High overlap represents the
more common problematic scenario. One of our principle
hypotheses is that LayerFish will scale better than Sidebar, as
the number of elements increases.

Layering Distance (Relative)
Relative Layering Distance is the number of elements be-
tween the task element and the two goal elements at the start
of the task. We use two possibilities for Layering Distance,
Medium and Far. The absolute magnitude of these distances,
in elements, varies directly with the Number of Elements.
When Number of Elements is 25, Medium is 7 and Far is

19. When Number of Elements is 100, Medium is 44 and
Far is 94. We vary Layering Distances so that participants do
not know where the task element is located in each trial. Us-
ing two fixed distances for each Number of Elements reduces
variability, and so facilitates comparison across techniques.

Tasks: Independent Variable Conditions
The 4 independent variables, each with 2 levels, produce 16
different conditions. Participants performed a total of 60
tasks, of which 12 were training and 48 were timed trials.
For the timed trials, each condition was performed by each
participant 3 times (16 × 3 = 48).

Dependent Variables: Time Metrics
Layering tasks with scene indexes involve first finding a de-
sired correspondent, and then adjusting that correspondent’s
position in the scene index. We wondered how a fisheye scene
index would compare with a traditional scene index for this
components of a layering task. Thus, we derive three time
metrics for analyzing participants performance: Total Task
Time, Find Time, and Layering Time. Total Task Time mea-
sures how long it took participants to perform the task in en-
tirety. Find Time measures how long it took participants to
find the task element that must be layered. Find Time is cal-
culated as the time between the first touch down on the scene
index (to scroll) to the first touch down on the task element.
Layering Time measures how long it took participants upon
finding the task element to reorder it to the goal state. Layer-
ing Time is calculated as the time after selection until the task
element is positioned between the two goal elements.

We note that Find Time + Layering Time � Total Task Time.
Total Task Time includes additional time for selecting and
activating LayerFish and for accessing Sidebar. We do not
include a separate comparison of this additional time since
LayerFish is expected to always be slower, because selection
and activation requires a longer input sequence than the single
touch required for accessing Sidebar.

PARTICIPANTS AND RESULTS
We recruited 47 participants (12 female) between 19 and 33
years old (22 mean). Participants were university students,
primarily from Computer Science. We specifically invited
participants from design-centric courses in Computer Science
and Landscape Architecture to recruit participants with ex-
tensive experience working with layers. A majority (37) had
worked with design tools at least once. Before investigating
with expert visual designers, we sought to evaluate LayerFish
with a more accessible population, as an intial usability study.
Future work will examine expert visual designers.

We conducted a 2 (Technique) x 2 (Overlap Density) x 2
(Number of Elements) x 2 (Layering Distance) x 3 (trials) re-
peated measures analysis of variance (RM-ANOVA) on To-
tal Task Time, Find Time, and Layering Time metrics for
All Participants, the set of 47 participants. We performed
pairwise comparison for each condition (see Table 1). Fur-
ther, we examine a subset of All Participants identified as Ex-
perienced Layering Participants. We observe no order effects.
Since a task was only completed when the task element was
layered between the two goal elements, there is no measure



Far Layering Distance Medium Layering Distance

0

5

10

15

20

25

0

5

10

15

20

25

H
igh O

verlap D
ensity

Low
 O

verlap D
ensity

25 100 25 100
Number of  Elements

Ti
m

e 
(s

) Technique
Sidebar

LayerFish

Figure 8. Mean Total Task Time for All Participants.

Far Layering Distance Medium Layering Distance

0

5

10

15

20

0

5

10

15

20

H
igh O

verlap D
ensity

Low
 O

verlap D
ensity

25 100 25 100
Number of  Elements

Ti
m

e 
(s

) Technique
Sidebar

LayerFish

Figure 9. Mean Total Task Time for Experienced Layering Participants.

of errors. A post-questionnaire provides subjective experi-
ence report data.

Experienced Layering Participants
Through observations of participants during study sessions
and variances in the data, we suspected that the participants
more experienced with layering would performed tasks faster.
From the All Participants set, we identify 12 Experienced
Layering Participants based upon responses to two questions
in the pre-questionnaires:

• How often do you use visual design tools?

• On average, how many layers do your projects contain?

These 12 participants responded that they often or frequently
use visual design tools and typically work with at least 10 lay-
ers. The other 37 participants rarely used visual design tools,
and on average, worked with 5 or less layers. For each time
metric, we specifically compare times for these experienced
users between the two techniques.

Total Task Time: All Participants
Total Task Time begins when a participant first touches and
ends when the task is completed correctly. For LayerFish, this

Far Layering Distance Medium Layering Distance

0

2

4

6

8

0

2

4

6

8

H
igh O

verlap D
ensity

Low
 O

verlap D
ensity

25 100 25 100
Number of  Elements

Ti
m

e 
(s

) Technique
Sidebar

LayerFish

Figure 10. Mean Find Time for All Participants.

Far Layering Distance Medium Layering Distance

0

2.5

5

7.5

0

2.5

5

7.5

H
igh O

verlap D
ensity

Low
 O

verlap D
ensity

25 100 25 100
Number of  Elements

T
im

e 
(s

) Technique
Sidebar

LayerFish

Figure 11. Mean Find Time for Experienced Layering Participants.

includes selection and activation time. Total Task Time us-
ing LayerFish was less than Sidebar with Low Overlap Den-
sity, but greater than with High Overlap Density (see Fig-
ure 8). Differences in means were statistically significant in
all conditions (Table 1, A1-8). We observed a main effect
for each independent variable: Technique (F1,34 = 95.862,
p < 0.001), Overlap Density (F1,34 = 918.01, p < 0.001),
Number of Elements (F1,34 = 1938.316, p < 0.001), and
Layering Distance (F1,34 = 154.541, p < 0.001).

Total Task Time: Experienced Layer Participants
Experienced Layering Participants were on average faster for
Total Task Time when compared with All Participants, partic-
ularly for LayerFish. In Low Overlap tasks, these participants
were faster with LayerFish (see Figure 9). In High Overlap
tasks, these participants were faster with Sidebar, but only
some cases were statistically significant (Table 1, E6 and E7).

Find Time: All Participants
In Low Overlap Density tasks, participants were faster at
finding the task element with LayerFish (Figure 10, Table 1
A1-4). In High Overlap Density tasks, participants averaged
faster Find Time with LayerFish in most conditions. These
results were statistically significant when Layering Distance
is Far (Table 1, A6 and A8). We observed a main effect



Table 1. Pairwise comparison of Total Task Time, Find Time, and Layering Time between the two Techniques for each combination of Overlap Density,
Number of Elements, Layering Distance. Rows A1-A8 (white background) show mean times with statistical significance for All Participants. Rows
E1-E8 (gray background) show mean times with statistical significance for Experienced Layering Participants, a subset of All Participants.

Total Task Time (s) Find Time (s) Layering Time (s)

Overlap
Density

Number
of

Elements

Layer-
ing

Distance

Layer
Fish

Side-
bar

p <
F =

Layer
Fish

Side-
bar

p <
F =

Layer
Fish

Side-
bar

p <
F =

A1 Low 25 Medium 4.6 6.5
.001

98.5 .036 2.3
.001

810.8 1.61 4.22
.001

145.7

E1 Low 25 Medium 4.01 6.35
.001

25.44 0 2.1
.001

187.3 1.08 4.00
.001

60.62

A2 Low 25 Far 4.2 7.2
.001

53.7 .081 2.03
.001

1036 1.48 5.21
.001

189.8

E2 Low 25 Far 4.12 7.18
.001

28.42 0 2.09
.001

155.6 1.14 5.10
.001

69.75

A3 Low 100 Medium 4.1 14.3
.001

283 .03 6.5
.001

397.1 1.43 7.79
.001

163.7

E3 Low 100 Medium 3.84 14.39
.001

71.66 .03 5.43
.001

201.8 1.03 8.03
.001

59.55

A4 Low 100 Far 5.5 19.7
.001

797 .10 7.98
.001

1858 2.23 11.75
.001

556.1

E4 Low 100 Far 4.80 19.16
.001

388.8 .07 7.38
.001

437.6 1.24 11.36
.001

414.7

A5 High 25 Medium 8.7 6.6
.001

50.2 2.33 2.34
.97

.002 3.77 4.25
.20

5.07

E5 High 25 Medium 7.6 6.54
.10

3.25 2.2 2.35
.65

.212 3.22 4.19
.05

3.63

A6 High 25 Far 9.6 7.8
.01

7.51 1.8 2.0
.02

5.67 5.10 5.83
.11

2.59

E6 High 25 Far 9.28 7.23
.001

25.44 1.9 1.9
.83

.05 3.97 5.34
.047

4.15

A7 High 100 Medium 16.9 12.9
.001

20.2 5.53 5.71
.54

.39 8.41 7.16
.24

1.44

E7 High 100 Medium 15.6 13.17
.05

4.22 4.6 5.9
.10

2.49 7.12 7.5
.70

.209

A8 High 100 Far 23.2 19.9
.001

23.3 7.46 8.22
.03

4.1 13.39 11.64
.044

4.10

E8 High 100 Far 21.39 20.0
.50

.477 5.86 8.25
.017

6.18 12. 69 11.78
.61

.268

for all factors: Technique (F1,34 = 1412.692, p < 0.001),
Overlap Density (F1,34 = 416.6, p < 0.001), Number of Ele-
ments (F1,34 = 1175.654, p < 0.001), and Layering Distance
(F1,34 = 31.753, p < 0.001).

In Low Overlap Density tasks, Find Time for LayerFish can
be zero seconds (Table 1, A1-4, E1-4). Find Time is intended
to measure the scrolling time required to find the task ele-
ment. Find Time is measured as the time between the first
touch down within a technique and the first touch down on
the task element. With LayerFish, these two touches may be
the same touch, as selection allows the participant to see the
task element without scrolling.

Find Time: Experienced Layering Participants
The Experienced Layering Participants were faster at find-
ing the task element on average using LayerFish than Sidebar
(see Figure 11). This result was statistically significant for all
Low Overlap Density tasks and when Number of Elements
was 100 and Layering Distance was Bottom for High Over-
lap Density tasks (Table 1, E1-4, E8). These participants also
were on average faster at finding the task element than the
average for All Participants.

Layering Time: All Participants
Layering Time measures long it takes to adjust the visual
stack position of the task element so that it is between the
two goal elements. The metric is derived by calculating the



Far Layering Distance Medium Layering Distance

0

5

10

0

5

10

H
igh O

verlap D
ensity

Low
 O

verlap D
ensity

25 100 25 100
Number of  Elements

Ti
m

e 
(s

) Technique
Sidebar

LayerFish

Figure 12. Mean Layering Time for All Participants.

Far Layering Distance Medium Layering Distance

0

5

10

0

5

10

H
igh O

verlap D
ensity

Low
 O

verlap D
ensity

25 100 25 100
Number of  Elements

Ti
m

e 
(s

) Technique
Sidebar

LayerFish

Figure 13. Mean Layering Time for Experienced Layering Participants.

difference in time between the selection of the task element
and the finishing of the task. In Low Overlap Density tasks,
participants had faster Layering Times when using LayerFish
(see Figure 12). This result is statistically significant for all
Low Overlap Density tasks (Table 1, A1-4). In High Overlap
Density tasks, participants were faster with LayerFish when
the Number of Elements was 25, but slower with LayerFish
when the Number of Elements was 100. This result was sta-
tistically significant only in tasks with 100 elements and the
Layering Distance is Far (Table 1, A8). We observed a main
effect for all factors: Technique (F1,34 = 247.403, p < 0.001),
Overlap Density (F1,34 = 471.168, p < 0.001), Number of El-
ements (F1,34 = 1105.93, p < 0.001), and Layering Distance
(F1,34 = 140.914, p < 0.001).

Layering Time: Experienced Layering Participants
Experienced Layering Participants had faster Layering Times
for Low Overlap Density tasks when using LayerFish (Fig-
ure 13). These results were statistically significant (Table 1,
A1-4). In High Overlap Density tasks, these participants were
faster with LayerFish in all cases, except when the Number of
Elements was 100 and the Layering Distance was Far (E8).
The results were statistically significant only when the Num-
ber of Elements was 25 (E5-6).

Experience Reports
Post-questionnaire responses provide reports of subjective
experiences (see Figure 14). A majority of participants
agreed that LayerFish was easy to use (χ2 = 30.13, p <
0.001), and they felt faster with LayerFish for both a few
elements (χ2 = 21.62, p < 0.003) and many elements
(χ2 = 10.55, p < 0.05). Participants agreed that Layer-
Fish required less effort with only a few elements (χ2 = 9.49,
p < 0.05). However, with many elements, only a slight ma-
jority agreed that LayerFish required less effort. This result
was not statistically significant (χ2 = 6.94, p < 0.14). Partic-
ipants agreed that they would use LayerFish in visual design
tools like Adobe Photoshop (χ2 = 20.55, p < 0.004).

15%

9%

28%

17%

38%

32%

70%

66%

60%

60%

51%

43%

15%

26%

13%

23%

11%

26%

LayerFish was easy to use.

I want to use LayerFish in a visual design 
application, such as Photoshop.

In tasks with only a few elements, 
LayerFish was faster than Sidebar for 

performing the tasks.

In tasks with many elements, LayerFish was 
faster than Sidebar for performing the tasks.

In tasks with only a few elements, 
LayerFish required less effort than Sidebar.

In tasks with many elements, LayerFish 
required less effort than Sidebar.

100 50 0 50 100
Percentage of Responses

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure 14. Results from post-questionnaire responses. Percentages show
breakdowns participants’ agreement (right), neutrality (middle), or dis-
agreement (left) for each statement.

DISCUSSION
We hypothesized that our independent variables, which dif-
ferentiate situations that users are likely to experience when
working with overlapping content, would yield interesting
findings. We observe significant differences between the two
techniques for Overlap Density, Number of Elements, and
Layering Distance. The most significant differences occur
with Overlap Density. LayerFish was faster than Sidebar for
Low Overlap tasks and slower in High Overlap tasks. We
suspect that LayerFish requires additional learning time, as
participants gain understanding of how interactions affect the
fisheye representation. We also observed task performance
differences for Experienced Layer Participants that indicate
benefits of LayerFish for more expert users.

Low Overlap Density
In Low Overlap Density tasks, mean Total Task Time, Find
Time, and Layering Time with LayerFish were all shorter
than with Sidebar. Low Overlap Density means that the task
element and goal elements only overlap with a few other el-
ements. Selection in LayerFish allows the participant to en-
gage only those few elements that overlap, unlike with Side-
bar, where all elements are present in the scene index. Not
surprisingly, this capability improves layering performance.
After selection with LayerFish, the task element was imme-
diately visible and could be quickly layered between the two
goal elements, which were also visible. LayerFish does not
require scrolling in this case, while Sidebar does.



LayerFish does not present a fisheye visualization in these
low overlap tasks, instead using the common scene index rep-
resentation. Ramos et al. suggested (but did not investigate)
that an in-place scene index palette would improve layering
times [19]. We have shown that this is true with at least 25
elements. We suspect that with fewer elements, the perfor-
mance of a global scene index, like Sidebar, will be compa-
rable to a contextual technique, like LayerFish. There exists
a threshold in the number of elements, below which the se-
lection and activation time for a contextual technique exceeds
the time to move to the side to access a global technique.

High Overlap Density
We sought to understand the effects of the fisheye visualiza-
tion on layering performance, by including a task condition,
High Overlap, in which both LayerFish and Sidebar include
a similar number of elements.

The Total Task Time results show that LayerFish is slower
than Sidebar in high overlap tasks. LayerFish requires a se-
lection gesture to activate. High Overlap tasks require that
participants select (nearly) all elements using LayerFish. In
this case, the selection takes time but doesn’t help the user.
When we further breakdown task time, for Find Time, we
find that LayerFish is faster than Sidebar when there are 100
elements and Layering Distance is Far (Table 1, A8, E8). We
suspect the fisheye’s spatial distortion allows participants to
scroll longer distances in a single touch gesture. As Layering
Distance increases, so too does the difference in Find Time
between LayerFish and Sidebar.

Meanwhile, for Layering Time with All Participants, Layer-
Fish was slower when Number of Elements was 100 and Lay-
ering Distance was Far (Table 1, A8). When we look just
at Experienced Layering Participants, LayerFish was faster
when the Number of Elements was 25 (E5-6). We observe a
larger variance in Layering Times when Layering Distance is
Far, particularly for LayerFish. Bimanual scrolling was new
to participants. We suspect that it may require more training
for users to become comfortable at using it effectively.

Experienced Layer Participants
We observe a difference in the performance of the Experi-
enced Layering Participants. Using LayerFish, these partic-
ipants were faster than the average for All Participants. Yet,
while using Sidebar, they performed, on average, similarly to
All Participants. These performance differences for Layer-
Fish are most evident in the Find Time metric with High
Overlap tasks, particularly with 100 elements. In these cases,
Experienced Layering Participants’ mean Find Time is almost
two seconds faster than the mean time for All Participants.
The faster performance exhibited by Experienced Layering
Particpants with LayerFish indicates that LayerFish has per-
formance benefits for visual designers and others who work
with many layers of overlapping elements. These participants
seem more adept at learning to use LayerFish effectively.
Novice layer users may also see improved performance with
greater training and experience with layering.

The other significant difference was in Layering Time for
High Overlap tasks with 25 elements. In these tasks, Experi-

enced Layering Participants were faster using LayerFish than
Sidebar. This matches the observed results for All Partici-
pants, except that, unlike for all, the differences for Expe-
rienced Layering Participants are statistically significant. All
participants used bimanual scrolling in LayerFish to complete
tasks with dense overlap. Again, bimanual scrolling is a new
interaction, different from what participants are use to doing
with touch devices. These results indicate that Experienced
Layering Participants were among the quickest to learn how
to effectively use the technique, emphasizing the benefits of
LayerFish for visual designers who work with many layers.

Participant Experiences
Participants reported positive experiences using LayerFish.
Interestingly, despite that participants were actually slower
(in Total Task Time) using LayerFish with many elements,
many participants felt that they were faster. When we ex-
clude selection time for LayerFish, most participants were
faster using LayerFish. This may have been part of partici-
pants’ consideration when responding. Participants were not
in agreement that LayerFish requires less effort than Sidebar
when working with many elements. Since LayerFish requires
additional touches for selection and bimanual scrolling, it is
not surprising that participants felt it didn’t require less effort.

IMPLICATIONS FOR DESIGN
We use the findings from the evaluation to derive implications
for the design of pen+touch and multi-touch design tools that
support layering operations.

Design tools with a scene index would benefit from transi-
tioning to a fisheye visualization as the number of elements
in the design space grows large. We saw benefits with Layer-
Fish when the design space contained at least 25 elements,
even when all elements overlapped. LayerFish was faster than
Sidebar for Find Time in High Overlap tasks when Layering
Distance was Far. We suspect that the spatial distortion of the
fisheye allowed users to scroll longer distances more quickly.
Prior work has used semantic zooming [18] as a form of spa-
tial scaling to support speed-dependent scrolling rates in doc-
ument browsing tasks [15]. We have shown that a fisheye
view, as an alternate form of spatial scaling, can also improve
scrolling performance in layering tasks with a scene index.

Design tools should support both in-place (i.e. LayerFish) and
always-present (i.e. Sidebar) techniques for layering overlap-
ping content. As the number of elements in a design grows
large, the traditional scene index requires more effort and at-
tention to effectively layer elements. An in-place technique,
which enables selection to filter elements the user wishes to
layer, can improve layering task performance time. However,
when there are many elements that highly overlap, the user
is unable to effectively select only the desired elements, re-
ducing the benefits of selection. Additionally, when there are
only a few elements, all are directly visible in the scene index,
and scrolling is not required. In these cases, we recommend
a traditional scene index that transitions to a fisheye when the
number of elements grows large (at least 25).

Multi-touch scene indexes should support bimanual scrolling,
particularly for tools in which users typically create 10 or



more layers. Bimanual interactions have been shown to im-
prove performance of compound tasks, in which each hand
can adjust different parameters of interaction [16]. In Layer-
Fish, the right hand layers a selected correspondent, while
the left hand scrolls the fisheye scene index. Unimanual ap-
proaches require dragging the selected correspondent to the
top or bottom of the scene index, requiring more total touch
distance travel than with our bimanual technique.

ACKNOWLEDGEMENTS
This material is based upon work supported by the National
Science Foundation, under grant IIS-1247126, and Wacom
Technology Corporation. Any opinions, findings, and con-
clusions expressed in this material are those of the authors
and do not reflect the views of the NSF or Wacom.

CONCLUSION
We present LayerFish, a new bimanual interaction technique
for layering overlapping content. With a bimanual gesture,
the user selects a subset of elements within a larger design
space. When filtering out elements with selection, layering
operations take less time than with a traditional scene index.
A fisheye scene index increases the number of visible cor-
respondents, while reducing time to find a desired element.
Bimanual scrolling allows a selected correspondent, manipu-
lated with the right hand, to remain as the focus of the fisheye
while the left hand scrolls the view.

We apply a fisheye visualization to a traditional scene index.
Prior work has investigated various advantages and disadvan-
tages of fisheyes in numerous contexts [3]. Our findings show
that fisheyes can be faster for finding the desired correspon-
dent in a large scene index. One of the primary challenges
with fisheyes is target acquisition, since targets are continu-
ously moving due to changes in the fisheye focus. One so-
lution is to use speed-coupled flattening to remove the fish-
eye effects as panning or scrolling velocities increase [8].
We employ speed-coupled flattening with inertial scrolling in
LayerFish. For target acquisition with hierarchical structures
of text, Fisheye Menus [2] are slower than traditional hierar-
chical menus [14]. Our present investigation focuses on flat
scene index structures with thumbnail images. Future work
can investigate hierarchical scene indexes.

In order to focus investigation on layering performance, par-
ticipants were not able to zoom and pan the design space.
The High Density Overlap tasks where all elements over-
lap completely, while representing extreme scenarios, would
gain little benefit from zooming and panning. However, we
presently use LayerFish in a design environment with an in-
finite, zoomable canvas. Future work will look at how a
zoomable space affects selection and layering performance
with LayerFish.

Designers are accustomed to working with their hands. While
working with physical media, visual designers generate new
ideas by exploring different arrangements of elements, mov-
ing them around and sketching over and amidst these ele-
ments. Future work will investigate LayerFish in architecture
contexts, where designers create complex visual representa-
tions with overlapping content. We hypothesize that visual

designers would benefit from interactive tools that allow them
to directly gesture with their hands to explore a space of ideas.

RIGHTS FOR FIGURES
Figures 1-14 ©Andrew M. Webb, 2016.

REFERENCES
1. Agarawala, A., and Balakrishnan, R. Keepin’ it real:

Pushing the desktop metaphor with physics, piles and
the pen. In Proc. ACM CHI (2006), 1283–1292.

2. Bederson, B. B. Fisheye menus. In Proc. ACM UIST
(2000), 217–225.

3. Cockburn, A., Karlson, A., and Bederson, B. B. A
review of overview+detail, zooming, and focus+context
interfaces. ACM Comput. Surv. 41, 1 (Jan. 2009).

4. Davidson, P. L., and Han, J. Y. Extending 2d object
arrangement with pressure-sensitive layering cues. In
Proc. ACM UIST (2008), 87–90.

5. Deitch, J., Geiss, S., and Gruen, J. Keith Haring. Rizzoli
International Publications, 2014.

6. Furnas, G. W. Generalized fisheye views. SIGCHI Bull.
17, 4 (Apr. 1986), 16–23.

7. Grossman, T., Baudisch, P., and Hinckley, K. Handle
flags: Efficient and flexible selections for inking
applications. In Proc. Graphics Interface (2009).

8. Gutwin, C. Improving focus targeting in interactive
fisheye views. In Proc. ACM CHI (2002), 267–274.

9. Hamilton, W., Kerne, A., and Robbins, T.
High-performance pen + touch modality interactions: A
real-time strategy game esports context. In Proc. ACM
UIST (2012), 309–318.

10. Herrlich, M., Walther-Franks, B., Schröder-Kroll, R.,
Holthusen, J., and Malaka, R. Proxy-based selection for
occluded and dynamic objects. In Proc. of International
Conference on Smart Graphics (2011), 142–145.

11. Hinckley, K., Chen, X. A., and Benko, H. Motion and
context sensing techniques for pen computing. In
Proceedings of Graphics Interface 2013 (2013), 71–78.

12. Hinckley, K., Yatani, K., Pahud, M., Coddington, N.,
Rodenhouse, J., Wilson, A., Benko, H., and Buxton, B.
Pen + touch = new tools. In Proc. ACM UIST (2010).

13. Holz, C., and Baudisch, P. Understanding touch. In
Proc. ACM CHI (2011), 2501–2510.

14. Hornbæk, K., and Hertzum, M. Untangling the usability
of fisheye menus. ACM Trans. Comput.-Hum. Interact.
14, 2 (Aug. 2007).

15. Igarashi, T., and Hinckley, K. Speed-dependent
automatic zooming for browsing large documents. In
Proc. ACM UIST (2000), 139–148.

16. Kabbash, P., Buxton, W., and Sellen, A. Two-handed
input in a compound task. In Proc. ACM CHI (1994).

17. Leithinger, D., and Haller, M. Improving menu
interaction for cluttered tabletop setups with user-drawn
path menus. In Proc. ACM Tabletop (Oct 2007).

18. Perlin, K., and Fox, D. Pad: an alternative approach to
the computer interface. In Proc. SIGGRAPH (1993).

19. Ramos, G., Robertson, G., Czerwinski, M., Tan, D.,
Baudisch, P., Hinckley, K., and Agrawala, M. Tumble!
splat! helping users access and manipulate occluded
content in 2d drawings. In Proc. of ACM AVI (2006).


