Electronics 101

Tuesday, January 24, 12

• The flow of electrons and electric charge through a material

What is electricity?

Conductors

- Materials that allow for easy movement of electrons
- All metals are conductors, because their electrons are loosely bound to individual atoms.
- This is also why metal is easily malleable
- Other materials can conduct as well:

salt water, graphite

Insulators

- Materials that do not allow their electrons to move easily
- rubber, ceramic, plastics, glass, pure water, air, etc.

Semiconductors

- Materials between conductors and insulators
- silicon, germanium, gallium arsinide, silicon carbide
- Electron mobility in semiconductors can be modified by adding impurities, called dopants

Conductance and Resistance one is the inverse of the other.

Conductivity is a spectrum

- Much like opacity and transparency.
- Shown here is the volume resistivity of common materials

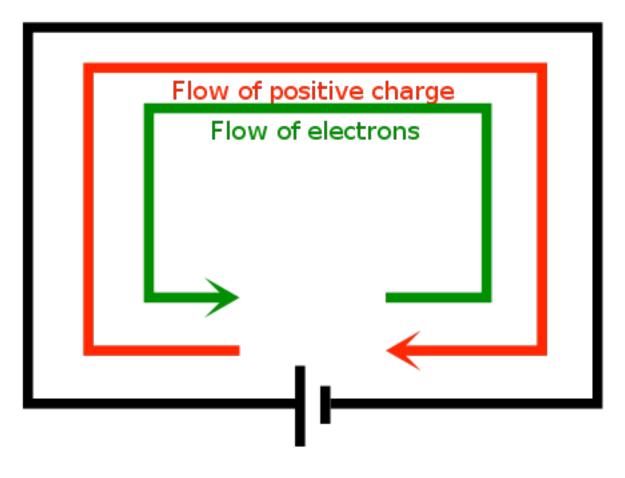

Silver Silicon Glass Air Teflon

Copper Platinum Mercury Nichrome Germanium Sea water Hard rubber

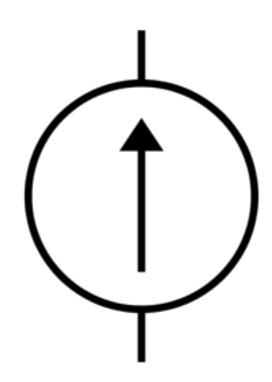
 1.59×10^{-8} 1.68×10^{-8} 1.06×10^{-7} 9.8×10⁻⁷ $|.|0 \times |0^{-6}|$ 4.6×10^{-1} 2×10⁻¹ 6.40×10^{2} 10×10¹⁰ |×|0¹³ 1.3×10¹⁶ **|0×|0**²²

Voltage

- between two points.
- always measured between two points.

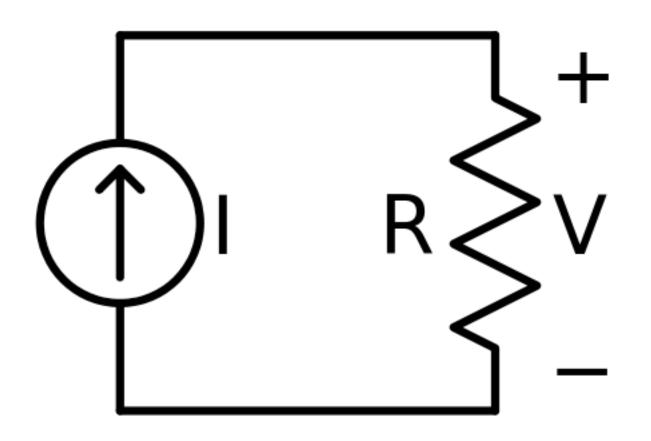

• Voltage is the difference in electrical potential (the total amount of free charge)

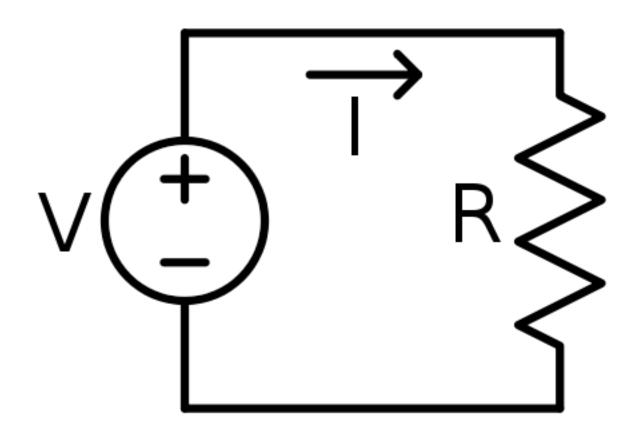
Voltage is not like temperature, there are no absolute voltages. Voltage is



Current

- Current is a measure of the flow electrons in a closed loop.
- Current <u>always</u> flows in a loop in electronic circuits.
- Real current flow is "backwards", compared with how we describe current flow in electronic circuits.
- Conventional current describes the movement of positively charged electron "holes", rather than the flow of electrons.
- Current is the flow of "holes" from a high potential to a lower potential.


Symbol for current source


Ohms Law V = IRI = V/RR = V/I

Tuesday, January 24, 12

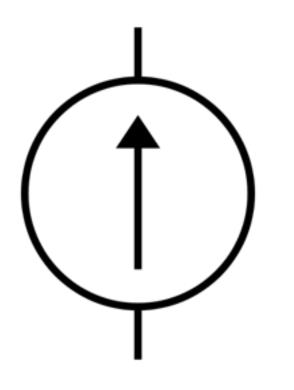
Voltage, Current, and Resistance are all connected through Ohm's Law

Examples

Circuit Abstractions

-**///**//

Ideal Wire

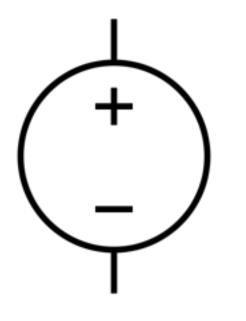

Has infinite conductance Therefore Zero Resistance

Ideal Resistor

Has a resistance of R Conductance of I/R

Not dependent on frequency or temperature

Circuit Abstractions



Ideal Current Source

Must be connected in a loop.

Puts out exactly the current that is specified, all the time.

Circuit Abstractions

Ideal Voltage Source

Puts out exactly the voltage that is specified, all the time. Cannot be in parallel with a voltage source of a different voltage.

Kirchoff's Laws

- KVL Kirchoff's Voltage Law:
- KCL Kirchoff's Current Law:

 - OR: What goes in, must come out.

• The sum of all voltages around a closed loop must equal zero

• The sum of all currents entering a node must equal zero

Examples on whiteboard

Homework

Watch these two lectures on MIT's OCW site:

- spring-2007/video-lectures/lecture-1/
- spring-2007/video-lectures/lecture-2/
- understanding
- Test your understanding by finishing this homework:
 - electronics-spring-2007/assignments/hwl.pdf
 - (Skip Exercise I-3 and Problem I-I.)

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-electronics-

HINT: Download the videos, and watch at 1.5x or 2x speed in VLC, slowing it down to normal when you stop

<u>http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-and-</u>